5. Biofabrication:首次开发出三维生物打印机打印人皮肤
在一项新的研究中,来自西班牙马德里卡洛斯三世大学(UC3M)和格雷戈里奥-马拉尼翁综合大学医院(Hospital General Universitario Gregorio Mara?ón)的研究人员与BioDan集团(BioDan Group)合作,开发出一种三维生物打印机原型,从而能够制造出完全功能性的人类皮肤。这种皮肤适用于移植到病人体内或者用于研究或测试化妆品、化工产品和药用物品。相关研究结果近期发表在Biofabrication期刊上,论文标题为“3D bioprinting of functional human skin: production and in vivo analysis”。
在这项研究中,研究人员首次证实利用这种新的三维打印技术制造出合适的人类皮肤是可能的。论文共同通信作者、UC3M生物工程与航空航天工程系教授José Luis Jorcano指出这种皮肤“能够被移植到病人体内,或者用于商业环境中大量地测试化工产品、化妆品或药用物品,并且针对这种测试制定出与这些用途相匹配的时间表和价格”。
这种新的人类皮肤是利用生物打印制造出的人类器官之一。它具有天然的人类皮肤的组织结构:位于最外面的具有角质层的表皮,起着抵御外部环境的作用;比表皮位于更深处和更厚的真皮。真皮是由产生胶原蛋白的成纤维细胞组成的。胶原蛋白让皮肤具有弹性和机械强度。
生物墨水(bioink)是三维生物打印的关键。当利用三维生物打印机制造皮肤而不是墨水盒和彩色墨水时,研究人员使用了携带生物组分的喷射器。根据格雷戈里奥-马拉尼翁综合大学医院研究员Juan Francisco del Ca?izo的说法,“了解如何混合这些生物组分、在什么条件下利用它们开展研究以至于细胞不会发生功能恶化以及如何正确地储存产品,在这种系统中发挥着至关重要的作用。”储存这些生物墨水的行为是由一台计算机控制着的。这台计算机以一种有序的方式将它们储存在打印床上,随后制造出人皮肤。
制造这些组织的过程能够以两种方式开展:利用很多细胞制造同种异体皮肤用于工业过程;利用病人自己的细胞制造自体皮肤用于治疗目的,如用于治疗重度烧伤,这种自体皮肤制造方法依具体情况而定。研究人员注意到,“我们仅使用人细胞和组分制造出具有生物活性的皮肤,这种皮肤能够产生它自己的人胶原蛋白,因而避免其他方法中使用的动物胶原蛋白。”这并不是全部,这是因为他们也正在寻找打印其他人组织的方法。
这种新技术具有几种优势。BioDan集团首席执行官Alfredo Brisac指出,“这种生物打印方法允许以一种标准化的自动化方法制造皮肤,而且这种方法并不如手工制造那么昂贵。”
当前,这种制造方法正在接受不同的欧洲监管机构的审批以便确保制造出的这种皮肤适用于移植到烧伤病人和具有其他皮肤问题的那些病人体内。此外,这些组织能够被用于测试药用物品、化妆品消费者化工产品,毕竟当前的法律要求这种测试不能在动物体内开展。
6. Cell Stem Cell:创造人工肾脏可能需要这种技术
美国萨克研究所的科学家们最近开发了一种在体外培养肾祖细胞(Nephron Progenitor Cells)的方法,在此之前一些维持肾祖细胞培养的尝试经常失败,培养的细胞或者死亡或者失去发育潜能,无法保持祖细胞状态。
肾祖细胞,至少对人类来说,经常只存在于胚胎发育的一个短暂阶段。这些细胞会继续发育形成肾单位,负责血液过滤排出尿液。但是成人体内不存在肾祖细胞,在损伤或疾病状态下,不能生成新的肾脏组织。科学家们认为在实验室中获得肾祖细胞将为研究肾脏发育最终帮助治疗肾脏疾病提供一种新方式。
其他科学家曾经使用诱导多能干细胞获得肾祖细胞样细胞,这种方法通常需要花费很长时间,并且很难分离得到比较纯的细胞群体,产生的肾祖细胞样细胞也只能维持较短时间,几天之内就会发育成熟变成成体肾脏细胞,因此一直以来没有稳定的祖细胞群体可供科学研究。
在研究伊始,研究人员直接从小鼠胚胎中分离肾祖细胞,开发能够维持祖细胞状态的方法。他们发现如果将细胞培养在3D培养条件下,再加入一些信号分子混合物,就能够长时间稳定维持肾祖细胞状态。随后将这些3D培养的祖细胞转移到其他条件或移植到动物体内可以发育形成具有功能的肾单位样结构。
接下来研究人员又利用人类胚胎肾祖细胞以及从干细胞分化得到的人类肾祖细胞找到了适用于人类肾祖细胞培养的方法。他们再一次证明这种方法能够在体外长期维持肾祖细胞。研究人员表示该研究使用的3D培养策略也有可能应用于其他类型祖细胞的培养。他们计划接下来研究培养发育成完整肾脏所需的其他类型祖细胞的方法。如果能够实现对其他类型祖细胞的培养,那距离创造一颗可供移植的人工肾脏将不再遥远。
7. PNAS:利用干细胞定制具有抗炎作用的3D打印软骨
为了不用手术就可以治疗磨损发炎的髋关节,科学家们在类似髋关节股骨头的3D支架上诱导干细胞进行编程生长为新的软骨,同时结合基因治疗还可以激活新软骨释放抗炎分子防止关节炎复发。该工作由华盛顿大学医学院的研究人员完成,发表在国际学术期刊PNAS上。
这项技术使用了一种3D可生物降解的合成支架,这种支架可以根据病人关节的准确形状进行定制,再利用病人皮肤下脂肪组织中的干细胞诱导形成软骨,将其覆盖在3D支架上从而获得新的关节软骨。随后将新软骨植入发炎髋关节表面,用活组织重新覆盖髋关节,从而消除关节炎疼痛,延缓甚至消除一些病人对关节替换手术的需要。
除此之外,研究人员还借助基因疗法将一个基因插入到新生的软骨细胞中,再用一种简单药物将其激活,该基因可以促进抗炎分子的释放进而防止关节炎复发。“在有炎症的时候,我们可以给病人一种简单的药物,激活我们植入的基因来降低关节部位的炎症,这样我们就可以在任意时候停止给药来关闭基因的表达。”研究人员这样说道。
这种基因疗法是非常重要的,当关节部位的炎症分子水平增加,软骨会受到损伤,疼痛也会出现。将基因疗法加入到干细胞和3D打印支架技术中,研究人员相信这将有助于阻止关节炎复发,让植入软骨发挥更长时间的作用。
有数据表明目前有3000万人美国人被诊断为骨关节炎,而骨关节炎的发生率处于上升态势。该数字中包含许多年龄在40到65岁的相对年轻病人,这些病人由于受到年龄限制还不适合进行关节替换手术,而传统的方法又不是特别有效。研究人员认为这部分病人或在将来成为使用这种新技术的理想候选人
8. 世界上首例3D打印药物问世
毫无疑问,3D打印技术正在改变整个世界。从工业生产到设计,医药以及电力,这一技术对产品产生了革命性的推动作用。它将曾经昂贵且不易获得的产品变得廉价而又普遍。
因此,我们对Aprecia制药公司刚刚发布的一项声明也不会感到意外。根据《Science News Journal》的报道,Aprecia药业成为首个利用3D打印技术生产药物的企业,它们首次通过这一方法生产的药物叫做"Spritam",主要用于治疗羊癫疯。目前,该药物不仅被成功打印出来,而且得到了FDA的批准,目前该药物已经在美国上市。3D打印药物的明显优势在于其快速溶解的特性。通过3D打印的方法,这些药物以粉末为初始形态,通过逐层叠加成为最后的药片。
对于"Spritam"来说,3D打印使得其更能够满足吞咽能力障碍的患者的需求(羊癫疯患者通常会有这样的症状)。这些药物在刚进入喉咙时能够快速溶解,不会造成气管的堵塞。3D打印将会最终推动个体化剂量以及定制药物组合等未来医疗方向的发展。更重要的是,这一药物的成功将会为其它药物的3D打印提供新的希望。
3D打印药物是3D打印技术一个革命性的突破,从此,它的用途不仅局限于电子产品与玩具,而是更为严肃的,与人类健康息息相关的药物产品。从3D打印器官,假肢,到如今的药物,标志着未来医疗发展的新方向。
9. Biofabrication:手持式3D“打印笔”可高效打印出人类干细胞
近日,刊登于国际杂志Biofabrication上的一项研究报告中,来自澳大利亚的研究人员通过研究,利用一种手持式的3D打印笔在自由模式下成功绘制出了具有较高生存率的人类干细胞。研究者开发的这种新型设备可以帮助外科医生在手术期间进行个性化的软骨移植。
研究者指出,利用水凝胶式的“生物墨水”来携带并且支持人类干细胞生长,并且利用较低的光源来凝固“生物墨水”这种打印笔运输的干细胞的存活率就会超过97%。而这种新型的3D打印笔同时也为组织工程学研究带来极大帮助,比如其可以逐层打印出细胞,用来构建可供移植的人工组织。
但在某些情况下,比如进行软骨修复的过程中,植入物的精确几何学特性或许就不能够被精确应用于外科手术中,这就使得进行人工软骨组织移植物的前准备工作变得复杂而且困难;新型打印笔的作用就好像外科医生的手一样,可以将定做好的支架或移植物准确填入患者机体缺失的部位。研究者Choong教授说道,这种新型设备的开发是科学家和临床医生共同努力的成果,对于改善研究以及患者的治疗将带来空前的改变。
这种打印笔比较轻便小巧、具有人体工程学特性及可消毒特性,同时还配备有较低功率的光源及固化剂;研究者认为这种新型设备后期将可以更好地帮助科学家们“绘制打印”出人类干细胞以供临床研究是治疗之用。
10. Biomaterials:3D打印技术用于大脑研究
在一项发表在Biomaterials杂志的研究中,来自澳大利亚和美国的一队研究人员用3D方法打印大脑结构的方法,以便培养神经细胞模拟真实的大脑。大脑占有2%体重,由超过一亿个神经元细胞组成,是个非常复杂的器官。科学家能运用动物模型研究大脑,但最近很多工作都在试图寻求替代品,此举受到英国国家中心NC3Rs(National Centre for the Replacement, Refinement & Reduction of Animals in Research)的支持。
其中一种替代品是在实验室创造大脑模型:在结构材料中培养大脑细胞,让科学家在组织中观察。在这之前,这仅在二维上有可能——产生细胞薄膜。Gordon教授与同事们利用3D打印技术,模仿大脑的层状3D结构以更准确的模拟大脑。最近几年3D印刷的到来,创造含有某种材料甚至是活细胞的结构,让我们开始探索非常基础的问题。在类似真实大脑的3D结构中观察发生的的情况,使我们更好的理解阿尔兹海默症、帕金森病等退行性疾病。
这个多学科成员组成的小组中有临床医生,生物学家,材料学家和化学家等,他们用结冷胶来创建新的三维结构。结冷胶是由细菌鞘氨醇单胞菌伊乐组成,经常在微生物实验室用于胶化剂。他们用结冷胶创建生物油墨,而它们与大脑细胞结核。结冷胶有助于细胞生长,用网状结构发挥作用。Biomaterials主编Kam教授解释了这项研究的重要性,无法接近人的大脑细胞使对大脑的分子研究充满挑战。大脑类结构对应用于分析疾病模型和药物研发都非常宝贵的价值。
<上一页 1 2